Նուկլեինաթթուներ, ԴՆԹ, ՌՆԹ, գենետիկական կոդ

dna-vs-rna-structure_medՆուկլեինաթթու, բարձրամոլեկուլային օրգանական միացություն, կենսապոլիմեր, որը կազմված է նուկլեոտիդներից։ Նուկլեինաթթուներ դեզօքսիռիբոնուկլեինաթթուն (ԴՆԹ) և ռիբոնուկլեինաթթուն (ՌՆԹ) առկա են բոլոր կենդանի օրգանիզմների բջիջներում։ Նրանք կարևորագույն դերն ունեն ժառանգական ինֆորմացիայի պահպանման, փոխանցման և իրականացման մեջ։

Պարունակվում են բոլոր օրգանիզմների բջիջներում։ Նուկլեինաթթուները հայտնաբերել է շվեյցարացի գիտնական Ֆրիդրիխ Միշերը (1868)։ Տարբերում են նուլեինաթթուների 2 գլխավոր տիպ՝ ռիբոնուկլեինաթթուներ (ՌՆԹ) և դեզօքսիռիբոնուկլեինաթթուներ (ԴՆԹ)։ Նուկլեինաթթուների մոլեկուլները, նուկլեոտիդներից բաղկացած, երկար պոլիմերային շղթաներ են։ ՌՆԹ-ի կազմի մեջ որպես ածխաջուր մտնում է ռիբոզը, իսկ ազոտային հիմքերն են՝ ադենինը, գուանինը, ցիտոզինը և ուրացիլը, իսկ ԴՆԹ-ն կազմում են համապատասխանաբար դեզօքսիռիբոզը և ադենինը, գուանինը, ցիտոզինը, թիմինը։ Նուկլեինաթթուներում փոքր քանակությամբ հանդիպում են նաև պուրինների և պիրիմիդինների այլ ածանցյալներ՝ մինորային թթվեր։

Դեզօքսիռիբոնուկլեինաթթու (ԴՆԹ) (անգլ.՝ Deoxyribonucleic acid (DNA)) բոլոր կենդանի օրգանիզմների և որոշ վիրուսների զարգացման և կենսագործունեության գենետիկական հրահանգները պարունակող նուկլեինաթթու։ Վերջինները, սպիտակուցներն ու ածխաջրերը կյանքի համար անհրաժեշտ երեք կարևորագույն մակրոմոլեկուլներն են։ ԴՆԹ-ի մոլեկուլները սովորաբար կրկնակի պարույրներ են՝ կազմված երկու երկար կենսապոլիմերներից, որոնք էլ իրենց հերթին կազմված են նուկլեոտիդներից։ Յուրաքանչյուր նուկլեոտիդ կազմված է ազոտային հիմքից (գուանին (G, Գ), ադենին (A, Ա), թիմին (T, Թ) և ցիտոզին (C, Ց)), ածխաջրից (դեզօքսիռիբոզ) և ֆոսֆորական թթվի մնացորդներից։ ԴՆԹ-ի մոլեկուլների հիմնական դերը տեղեկատվության երկարատև պահպանումն է։ ԴՆԹ-ի այն հատվածները, որոնք ծածկագրում են սպիտակուցներ, կոչվում են գեներ, իսկ ԴՆԹ-ի չծածկագրող հատվածներն ունեն կառուցվածքային նշանակություն կամ մասնակցում են ծածկագրող հատվածների ակտիվության կարգավորմանը։

ԴՆԹ-ի երկու շղթաներն ընթանում են միմյանց հակառակ ուղղությամբ, որի պատճառով համարվում են հակազուգահեռ դասավորված։ ԴՆԹ-ի որևէ ծայրում շղթաներից մեկի 3′ ծայրն է, մյուսի՝ 5′ ծայրը։ Դեզօքսիռիբոզին միանում է 4 տեսակի ազոտային հիմքերից որևէ մեկը[1]։ Հենց այս 4 ազոտային հիմքերի հաջորդականությունն էլ ապահովում է ինֆորմացիայի գաղտնագրումը։ Ինֆորմացիան պահպանվում է գենետիկական ծածկագրի միջոցով, իսկ ծածկագիրը հետագայում փոխակերպվում է ամինաթթուների հաջորդականության։ ԴՆԹ-ի շղթաներից մեկի հիման վրա միաշղթա նուկլեինաթթվի՝ ՌՆԹ-ի սինթեզի պրոցեսն անվանվում է տրանսկրիպցիա, իսկ ի-ՌՆԹ-ի կաղապարի վրա ամինաթթուների հաջորդականության սինթեզը՝ տրանսլյացիա։

Բջիջների ներսում ԴՆԹ-ն փաթեթավորվում է քրոմոսոմների մեջ։ Բջջի բաժանման ժամանակ քրոմոսոմները կրկնապատկվում են ԴՆԹ-ի ռեպլիկացիայի (կրկնապատկման) ժամանակ։ Էուկարիոտ օրգանիզմների մոտ (կենդանիներ, բույսեր, սնկեր և նախակենդանիներ) ԴՆԹ-ի հիմնական մասը պահպանվում է կորիզում, իսկ որոշ մասը՝ օրգանոիդներում (միտոքոնդրիումներում կամ քլորոպլաստներում)[2]։ Պրոկարիոտների մոտ (բակտերիա և արքեա) ԴՆԹ-ն պահպանվում է միայն ցիտոպլազմայում։ Քրոմոսոմներում ԴՆԹ-ի փաթեթավորմանը մասնակցում են հիստոնային սպիտակուցները։

Ռիբոնուկլեինաթթու, (ՌՆԹ), բոլոր կենդանի օրգանիզմներում պարունակվող երեք հիմնական մակրոմոլեկուլներից մեկը (մյուս երկուսը ԴՆԹ-ն և սպիտակուցներն են)։ Այնպես, ինչպես ԴՆԹ-ն, ՌՆԹ-ն նույնպես կազմված է նուկլեոտիդների շղթայից[1]։ Յուրաքանչյուր նուկլեոտիդ կազմված է ազոտային հիմքից, միաշաքարից (ռիբոզ) և ֆոսֆատային խմբից։ Նուկլեոտիդների հաջորդականության շնորհիվ ՌՆԹ-ն կարողանում է գաղտնագրել գենետիկական ինֆորմացիան։ Բոլոր բջջային օրգանիզմներն օգտագործում են իՌՆԹ-ն՝ սպիտակուցների սինթեզը ծրագրավորելու համար։

Բջջային ՌՆԹ-ն առաջանում է տրանսկրիպցիայի արդյունքում, որը ԴՆԹ-ի կաղապարի հիման վրա իրականացվող ՌՆԹ-ի ֆերմենտատիվ սինթեզն է։ Այս գործընթացն իրականանում է հատուկ ֆերմենտների՝ ՌՆԹ-պոլիմերազների միջոցով։ Տրանսկրիպցիայի արդյունքում առաջացած ՌՆԹ-ները հետագայում մասնակցում են սպիտակուցի կենսասինթեզին, որն իրականացնում են ռիբոսոմները։ Տրանսկրիպցիայից հետո մյուս ՌՆԹ-ները ենթարկվում են քիմիական ձևափոխությունների և կախված ՌՆԹ-ի տեսակից՝ առաջացնում երկրորդային և երրորդային կառուցվածքներ։

Միաշղթա ՌՆԹ-ները բնութագրվում են տարածական կառուցվածքներով, որտեղ շղթայի նույն նուկլեոտիդային հաջորդականությունները կապված ե

 

ն միմյանց հետ։ Որոշ բարձրակառուցվածքային ՌՆԹ-ներ, օրինակ՝ փՌՆԹ-ները, մասնակցում են սպիտակուցի կենսասինթեզին, ծառայում են կոդոնների ճանաչմանը և համապատասխան ամինաթթվի տեղափոխմանը սպիտակուցի սինթեզի վայր, իսկ ռՌՆԹ-ները կազմում են ռիբոսոմի հիմնական կառուցվածքային միավորը։

ՌՆԹ-ի ֆունկցիաները չեն սահմանափակվում միայն տրանսլյացիայում ունեցած նրանց դերով։ Փոքր կորիզային ՌՆԹ-ները, օրինակ, մասնակցում են էուկարիոտների իՌՆԹ-ների սփլայսինգին։

ՌՆԹ-ները մտնում են նաև որոշ ֆերմենտների կազմի մեջ (օրինակ՝ թելոմերազներ). որոշ ՌՆԹ-ների մոտ նկատվել է սեփական ֆերմենտատիվ ակտիվություն։

Մի շարք վիրուսների գենոմը կազմված է ՌՆԹ-ից, որը նրանց մոտ ունի այն նշանակությունը, ինչ բարձրակարգ օրգանիզմների մոտ ԴՆԹ-ն։ ՌՆԹ-ի ֆունկցիայի այսպիսի բազմազանության պատճառով ենթադրվում է, որ նախաբջջային առաջին կրկնապատկման ունակ մոլեկուլները եղել են ՌՆԹ-ները։

Գենետիկական կոդ, ժառանգական ինֆորմացիայի ծածկագրման համակարգ նուկլեինաթթուների համակարգում, կենդանիների, բույսերի, բակտերիաների և վիրուսների մոտ իրականացվում է նուկլեոաիդների հաջորդականությամբ։ Բնական նուկլեինաթթուներում՝ դեզօքսիռիբոնուկլեինաթթու (ԴՆԹ) և ռիբոնուկլեինաթթու (ՌՆԹ), հանդիպում են նուկլեոտիդների 5 տարածված ձևեր (յուրաքանչյուր նուկլեինաթթվում 4-ը), որոնք միմյանցից տարբերվում են ազոտային հիմքով։ ԴՆԹ պարունակում է ադենին (Ա), գուանին (Գ), ցիտոզին (Ց), թիմին (Թ), ՌՆԹ-ում թիմինի փոխարեն ուրացիլ է (Ու)։ Սպիտակուցում ամինաթթուների քանակությունն (20) ու գենետիկական կոդը կոդավորող նշանները (4) չեն համապատասխանում, հետևաբար կոդային թիվը, այսինքն՝ 1 ամինաթթուն կոդավորող նուկլեոտիդների քանակը 1 լինել չի կարող։

Հաստատվել են գենետիկական կոդի հետևյալ օրինաչափությունները.

1.Գոյություն ունի գծային համապատասխանություն նուկլեոտիդների և կոդավորող ամինաթթուների հաջորդականության միջև։

2.Գենետիկական կոդի հաշվումը սկսվում Է որոշակի կետից, մեկ ուղղությամբ, մեկ գենի սահմանում։

3.Կոդը չծածկող է։

4.Գենետիկական կոդը, որպես կանոն ունի այլասերում՝ 1 ամինաթթուն կոդավորում են 2 և ավելի տրիպլետ-սինոնիումներ։

5.Կոդային թիվը հավասար է 3-ի։

6.Գենետիկական կոդը կենդանի բնության մեջ ունիվերսալ է (առանձին բացառությամբ)։ Ամերիկացի գիտնականներ Մ. Նիրենբերգի, Ս. Օլոայի, Խ. Կորանի հետազոտություններով պարզվեց ոչ միայն կոդոնի կազմը, այլև նուկլեոտիդների հաջորդականությունը բոլոր կոդոններում։ Ըստ Ֆ. Կրիկի նշված աղյուսակը կենսաբանության համար ունի այն նշանակությունը, ինչ քիմիական տարրերի պարբերական աղյուսակը քիմիայի համար։ Աղյուսակից երևում է, որ կոդն ունի շատ համանուններ, այսինքն՝ յուրաքանչյուր ամինաթթու ներկայացված է մի քանի կոդոններով, բացառությամբ երկուսի (մեթիոնին, տրիպտոֆան), որոնք ունեն եզակի կոդոն։ 2. Կոդն ունի որոշակի կառուցվածք, ամինաթթվի տարբեր կոդոններ պատահականորեն չեն դասավորված աղյուսակում։ 3. Կոդն ունի նաև կոդոններ, որոնց ամինաթթու չի համապատասխանում։ Դրանցից ՈւԱԱ-ն, ՈւԱԴ-ն, ՈւԴԱ-ն ազդարարում են սպիտակուցի շղթայի ավարտը (թերմինացնող կոդոններ), իսկ ՈԻԱԴ-ն, ԴՈԻԴ-ն, ՈԻՈԻԴ-ն՝ սպիտակուցի սինթեզի սկիզբը (ինիցող)։ Գենետիկական կոդի իրացումը բջջում տեղի է ունենում 2 փուլով, առաջինը՝ կորիզում, երկրորդը՝ ցիտոպլազմայում, ռիբոսոմներում։

Leave a comment